
Applied Internet Technology (CSCI-UA.0480) - Sample Questions

• A reference is provided on the last page.
• This does not represent the length of the actual midterm

(this has more questions)
• This does not represent the exact topics being covered

 1. Read the code in the 1st column. Answer questions about the code in the 2nd and 3rd columns.

Code Question 1 Question 2

let vegetable = 'kohlrabi';
let fruit = 'rambutan';

const say_food = function() {
 vegetable = 'broccolini';
 let fruit = 'lychee';
 console.log(vegetable, fruit);
};

console.log(vegetable, fruit);
say_food();
console.log(vegetable, fruit);

What is the output of the code on the
left? Error is possible.

kohlrabi rambutan
broccolini lychee
broccolini rambutan

What is the type of the variable,
say_food? (that is, what is the result of
typeof say_food.

Function (object is
technically correct too)

function foo(bar, ...qux) {
 console.log('bar', bar);
 console.log('qux', qux);
}

let arr = ['a', 'b', 'c', 'd'];

foo(...arr);

What is the output of the code on the
left?

bar a
qux ['b', 'c', 'd']

What would the value of the parameter,
bar, be if foo were called without
arguments – foo();?

undefined

function f(num) {
 const magic = 5;
 function g(n) {
 return n * (num - magic);
 }
 return g;
}

const calculateTen = f(10);
console.log(calculateTen(3));

What is the output of the code on the
left?

15

What is the term / name used to describe
a function and the environment that I
was created it (that is, what JavaScript
feature allows the inner anonymous
function to access variables in the outer
function's local scope)?

closures

class A {
 foo() { console.log('foo'); }
}

class B extends A {
 constructor() {
 super();
 this.bar = 'bar';
 }
 qux() {
 return 'qux';
 }
}

const b = new B();

Using the class definitions to the left,
what do the following expressions
evaluate to?

b.hasOwnProperty('foo')
b.hasOwnProperty('bar')
b.hasOwnProperty('qux')

false
true
false

Using the class definitions to the left,
what do the following expressions
evaluate to?
Obj.getProto as shorthand for
Object.getPrototypeOf

Obj.getProto(b) ===
 B.prototype;

Obj.getProto(B.prototype) ===
 A.prototype);

 true
 true

const o = {
start: 1

};

function sumStart(n, m) {
return this.start + n + m;

}

const res = sumStart.bind(o, 2);

console.log(res(3, 4));

What is the output of the code on the
left?

6

What is the difference between bind and
call / apply.

call and apply execute a
function immediately while
bind returns a function

 2. In your Express projects, what are the following two files used for and what are their contents?

a) .gitignore Specifies what files should not be tracked (ignored) by git. The contents
 of the file are filenames (and globs), each separated by a newline

b) package.json Stores the module dependencies of your project. The content is JSON
generated from calling npm init and npm install --save

 3. Create a form that POSTS to the path /user/add
 a) the form should have 2 text inputs, first and a last (representing first and last name)
 b) …..as well as a submit button

<form method="POST" action="/user/add">
first: <input type='text' name="first">
last: <input type='text' name="last">
<input type="submit">
</form>

 4. Using the form from above, and the following Express route:

app.post('/user/add', function(req, res) {
 res.redirect('/success');
});

What will resulting request from the browser and the response from the server look like, assuming that the user filled in “Frederick
Formington” as first and last? For request headers, just type [Request headers go here] instead of actual headers. Assume that
the data form-url-encoded, meaning that name and value pairs are sent in the request as name1=value1&name2=value2.

Request
=====

POST /user/add HTTP/1.1
[Request headers go here]

name1=value1&name2=value2

Response
=====

HTTP/1.1 301 Permanent Redirect
Location: /success

 5. What is the output of this code, that the contents of /tmp/foo.txt is bar and that a client connects with netcat, and the user types in
world?

const net = require('net');
const fs = require('fs');

function handleRead(err, data) {
 console.log('file data', data);
}

function handleData(sock, greeting, binaryData) {
 console.log('before readFile');
 console.log(greeting, 'received', (binaryData + '').trim());
 fs.readFile('/tmp/foo.txt', 'utf8', handleRead);
 console.log('after readFile');
 sock.end();
}

function handleConnect(sock) {
 console.log('before data');
 sock.on('data', handleData.bind(null, sock, 'hello'));
 console.log('after data');
}

const server = net.createServer(handleConnect);
console.log('before listen');
server.listen(3000);
console.log('after listen');

before listen
after listen
before data
after data
before readFile
hello received world
after readFile
file data bar

 6. You just bought the domain, wholikespizza.com (um, congratulations?)! You decide to create a single serving site on the
domain. Your site contains just one page, and that page simply has the text 'ME' on it. Create a barebones Express application to run
your site by following the specifications below:

 a) all of the code will be in a single file called app.js
 b) your app will respond to GET requests on / (the root directory of your site)
 c) the body of your app's response will be the text, 'ME' (no views or templates necessary)
 d) it should listen on port 3000
 e) assume that the setup code below is already present
 f) finish writing the contents of app.js below:

// require
const express = require('express');

// create app
const app = express();

// create route
app.get('/', (req, res) => {

res.send('ME');
});

 // listen
 app.listen(3000);

 7. Describe how inheritance works in JavaScript. What mechanism is used to create objects that inherit properties from parent
objects. If a property is not found in an object, where will JavaScript continue to look to find that property?

JavaScript uses prototypes for inheriting properties from another object (its prototype). An object's prototype is
set through either the argument passed in to Object.create(proto) or through the constructor (which is just a
function called with new) that the object was created from (via its constructor's prototype property), or from a
class (the class creates a prototype or sets a prototype based on the extends keyword).

JavaScript will search up the prototype chain until it reaches Object.prototype.

 8. Name one HTTP request header and one HTTP response headers. Explain what each represents:

 a) There's more than one answer to both of these; here are some potential answers

User-agent - For a request, a string representing information about the client, such as
name, version number, etc. Typically, for browsers, it's the browser name and version.

Host – the domain name of the server that the request is sent to

 b) Content-Type – for a response, the internet media type of the content (is it html, an image,
etc.)

Set-Cookie – instructs the client to create a cookie

Location – the url that a 3xx response will redirect to

 9. Name three ways that functions are invoked, and explain what the variable, this, is set to in each case. The first box is already
filled in, complete the remaining five boxes: there are more than three answers

Invocation this

Regular function call the global object (in the case of node, the module level
global object)

Method call the object the method was called on

call/apply

arrow functions

the this argument passed in to call/apply (you can set
explicitly)

whatever this is in the surrounding context

 10. Using the following code, write out the output and briefly explain the reason for the output in the table below.

var obj = Object.create(Array.prototype);
obj.foo = 'bar';
console.log((typeof obj.foo));
console.log((typeof obj.baz));
console.log((typeof obj.push));
console.log(obj.hasOwnProperty('foo'));
console.log(obj.hasOwnProperty('push'));
console.log(obj.hasOwnProperty('toString'));

Output Reason

1 string obj.foo's value is a string

2 undefined obj does not have a property named baz

3 function obj's prototype is Array.prototype, which contains the method, push (a function)

4 TRUE foo was defined on obj, so it's an 'own property'

5 FALSE push comes from obj's prototype, so it's not an 'own property'

6 FALSE toString comes from Object.prototype, so it's not an 'own property'

 11. Debug the following code. You have an Express app using handlebars as a templating engine to generate html. An image on one of
your pages is showing up as a broken image icon...

 a) What are some steps that you would take to debug this problem. Be exact – discuss the tools that you would use and what

you're looking for.

• View source or check the network tab in developer tools to see what the url for the
image is.

• Check what status code the image returns by requesting it in the browser, looking at the
network tab or using curl

• Log out the url that the app is receiving (perhaps using middleware)

 b) What are some possible errors (that is, where can these errors occur?); again, be as exact as you can.

• If it's a 404
• maybe the link to the image is just incorrect (typo, wrong extension, absolute vs

relative)
• maybe there's no route handler for the image path or express-static wasn't enabled
• maybe it doesn't exist on the file system

• If it's a 500 and you're manually reading files in, then there may be an error/exception
in the file reading code

 12. Create a site using Express and handlebars templates:

 a) It should respond to GETS on three URLs: /old , /new ,
 b) /old will redirect to /new

• the response status code can be any of the redirect class status codes (or the default if your implementation doesn't
require an explicit status code to be sent)

 c) /new will display a list of names
• as an unordered list in HTML)
• these names can be stored as a global variable in your application
• the names in the list are: 'Gil', 'Jill', 'Bill' and 'Phil'
• this global variable can then be passed as context when your template is rendered
• assume that the template or view that you specify will be called names.hbs
• all pages on the site should have a header that says NAMES!!! - do this in such a way that the header doesn't have to be

written in each individual template

 d) All existing route handlers and any future route handlers should log out the http method of the request. (That is, you
will not have to put this logging functionality explicitly in your routes, but instead, use an express feature that will do this for
all routes)

 e) Write the contents of the following files in your project to implement the specifications outlined above:

app.js

// omit setup code (imagine that it is already present above for express and handlebars)
// define your routes below this line

const nameList = ['Gil', 'Jill', 'Bill', 'Phil'];

app.use((req, res, next) => {
 console.log(req.method);
 next();
});

app.get('/old', function(req, res) {
 res.redirect('/new');
});

app.get('/new', function(req, res) {
 res.render('names', {'nameList':nameList});
});

/views/names.hbs

{{#each nameList}}

{{this}}
{{/each}}

/views/layouts/layout.hbs

<!doctype html>
<html>
 <head><title>A Site</title></head>
<body>

 <h1>NAMES!!!</h1>
 {{{ body }}

</body>
</html>

 13. Describe two reasons for using a separate templating engine for rendering an HTML document rather than emitting HTML directly
as a string from within your application code?

Generating html in your application code can get very complex, even for simple documents.

Separating application logic from presentation logic helps reduce side-effects by avoiding a close integration
between logic and presentation.

 14. Answer the questions in the 2nd column about the code in the 1st column:

Code Questions

function Foo(num) { this.x = num;}
Foo.prototype.printX = function()
{ console.log(this.x); }
function Bar(num1, num2) {
 Foo.call(this, num1);
 this.y = num2;
}
Bar.prototype = Object.create(Foo.prototype);
var b = new Bar(100, 200);
b.printX();
console.log((typeof Foo))

What is the output of this program?

100
function

What would this refer to if the keyword new were omitted?

The global object

 15. The following code should print out: ['foo!', 'bar!', 'baz!'] ...However, there's an error in the implementation!

const obj = {
 punctuate: function() {

 // return this.words.map(w => this.s === undefined ? '' : w + this.s);
 // or use bind(this) on the anonymous function below

 return this.words.map(function(w) {
 if (this.s === undefined) {
 return '';
 } else {
 return w + this.s;
 }
 });
 },
 s: '!',
 words: ['foo', 'bar', 'baz']
};
console.log(obj.punctuate());

 a) What does the code above print out?

['', '', '']

 b) Fix the call to map (by crossing out / drawing arrows, etc.) so that the function works correctly.

 16. (Relevant only if cookies are covered) Answer the following questions about cookies:

 a) In the context of web development (of course!), what's a cookie?

It's a small piece of data that the server tells the client to store. In browsers, this data can be stored as a text
file or within a database. Cookies are used to maintain state between http requests.

 b) What are some practical applications of cookies?

Maintaining a session id or remembering a user's settings / preferences on the client side.

 17. Describe the user interaction / web page markup that may have resulted in this HTTP request being issued from the browser:

GET /foo?bar=baz HTTP/1.1
Host: qux.corge

A user entered the url http://qux.corge/foo?bar=baz in the url bar of the browser

or

A user submitted a form that had a method GET, action /foo, and an input element named bar.

 18. Write the two functions specified below:

Function 1: You're a mad scientist that loves stitching together parts of Arrays to make new Franken-arrays! To aid in your Mary
Shelley-esque experiments, you create a function called joinHalves.

 a) The function should have two parameters, firstArray and secondArray, with both expected to be Arrays (of course!)
 b) There is no need to validate or check the type of the incoming arguments.
 c) The function will return a new Array consisting of the first half of firstArray and second half of secondArray
 d) If there are an odd number of elements, use Math.floor or Math.ceil appropriately so that lesser elements are taken /

added to the new Array. For example
• firstArray: [1, 2, 3, 4, 5, 6, 7] … would contribute [1, 2, 3] to the beginning of the new Array
• secondArray: ['a', 'a', 'a']... would contribute ['a'] to the second half of the new Array
• The result of join_halves([1, 2, 3, 4, 5, 6, 7], ['a', 'a', 'a']) would be [1, 2, 3, 'a']

function joinHalves(firstArray, secondArray) {
 // extract the first part from the first array
 const firstHalf = firstArray.slice(0, Math.floor(firstArray.length / 2));

 // get the second half from the second array
 const secondHalf = secondArray.slice(Math.ceil(secondArray.length / 2));

 // put the two together in frankenArray
 const frankenArray = [...firstHalf, ...secondHalf]
 // frankenArray = firstHalf.concat(secondHalf);

 return frankenArray;
}

Function 2: Implement your own version of map (call it myMap). Your method will have an Array as one parameter, and a
function as the other parameter. It will do the same thing that the actual Array map method does (but with the Array object
passed in as a parameter, rather than as an object that the method is called on). For example, the following two should be
equivalent:

(assuming numbers is an Array, like [2, 4, 6, 8])

 e) numbers.map(myCallback);
 f) myMap(numbers, myCallback);

Implement myMap below:

function map(arr, transform) {
 var transformed = [];
 arr.forEach(function(element) {
 transformed.push(transform(element));
 });
 return transformed;
}

 19. Write an example URL, and label each part of the URL below (http:// is already filled out; there are 6 parts total)

Labels: 1)__protocol/schema_____ 2)______port_________ 3)__query string____

Example URL: http:// _wholikespizza.com___ __:8080__ ___/pizza/_________ ?crust=thin_ __#menu____

Labels: 2)_____domain_________ 5)____path________ 6)_fragment id___

 20. Write the following function: repeatCall(fn, n, arg1, arg2, up to argN). This function calls the function, fn, n times.

fn - the function to be called repeatedly
n - the number of times to call function, fn
arg1, arg2 up to argN - the arguments to pass to function, fn, when it is called

Example 1:

repeatCall(console.log, 4, "Hello!");

// prints out:
// Hello!
// Hello!
// Hello!
// Hello!

Example 2:

repeatCall(console.log, 2, "foo", "bar", "baz", "qux");

// prints out:
// foo bar baz qux
// foo bar baz qux

function repeatCall(fn, n, ...args) {
 for(var i = 0; i < n; i++) {
 fn(...args);
 }
}

// or the old way, using arguments and apply
function repeatCall(fn, n) {
 var args = Array.prototype.slice.call(arguments, 2);
 for(var i = 0; i < n; i++) {
 fn.apply(null, args);
 }
}

 21. Create a web app that's a number guessing game. At minimum, it should have:

* a regular Express app (along with its basic setup/configuration) to handle incoming requests
* a global variable in your app that represents a secret number
* a form where a user can submit a number
* after the submission, some way of determining whether or not the person's matches the secret number stored globally
* a page or pages that shows if you've guessed right... or if you've guessed incorrectly
* it's up to you to determine how many routes you'd like to make, as well as what requests you'd like to handle
* here are some examples of how the user may flow through win and lose scenarios:

 a) Write the setup code and routes that would go in your app.js file. However, in place of the setup code for handlebars
and the module that allows you to access the body property of the request, just write in ”// handlebars setup” or
“// request.body” where appropriate. Assume setup code for express is present.

// handlebars setup and request.body

const secret = 42;

app.get('/', function(req, res) {
res.render('index');

});

app.post('/', function(req, res) {
if (req.body.num == secret) {

res.redirect('/win');
} else {

res.redirect('/lose');
}

});

app.get('/win', function(req, res) {
res.render('win');

});

app.get('/lose', function(req, res) {
res.render('lose');

});

app.listen(3000);

 b) Imagine that your handlebars layout file is already created (along with the app.js file you've coded above). Use the routes and
callbacks you've defined in your app.js file to create the template files and the mark-up (this depends on your
implementation) that you'd need to use so that all pages in your app are rendered correctly. Include both the template's
path (relative to the project root) and name, as well as its contents. For example: (5 points)

name and path – path/to/myViews/myFancyTemplate.handlebars
contents – <p>Some content</p>

<!-- index.handlebars –>
<form method="post" action="/">
<input type="text" name="num">
<input type="submit">
</form>

<!-- win.handlebars -->
You got it!

<!-- lose.handlebars -->
Sorry …

 22. (Relevant only if databases are covered) Imagine that you have a collection called links in your database. It contains documents
that look like:

{ name: …, url: ….}

 a) Using the commandline client, add a new link document with name: snowman … and url:
http://unicodesnowmanforyou.com.

db.links.insert({name: 'snowman', url: 'http://unicodesnowmanforyou.com'})

 b) Assuming that there are other links in the collection, write a query using the commandline client that retrieves a single link (it
doesn't matter which one, just a single link, though)

db.links.findOne()

 c) Using the Mongoose API, get all of the links in the collection and simply log out the results with console.log once the query
gives back a result. Assuming that a schema and model constructor already exist, and you already have the setup code:

const Link = mongoose.model('Link');

Link.find(function(err, links, count) {}){
 console.log(links);
}

 23. (Relevant only if databases are covered) Two broad categories of databases are relational and NoSQL. NoSQL databases can
further be categorized by the way that they store their data:

 a) Name 3 categories / types of NoSQL databases

key-value, document, column, graph, object, etc.

 b) What type of NoSQL database is MongoDB?

document

http://unicodesnowmanforyou.com/
http://unicodesnowmanforyou.com/

Reference

Array String

properties

length

methods

pop()

reverse()

sort([compareFunction])

splice(index, howMany[, element1[, …[, elementN]]])

slice(index, howMany[, element1[, …[, elementN]]])

join([separator = ','])

concat(value1[, value2[, ...[, valueN]]])

indexOf(searchElement[, fromIndex = 0])

forEach(callback[, thisArg])

map(callback[, thisArg])

filter(callback[, thisArg])

reduce(callback[, initialValue])

some(callback[, thisArg])

every(callback[, thisArg])

properties

length

methods

split([separator][, limit])

toUpperCase()

slice(beginSlice[, endSlice])

replace(regexp|substr, newSubStr|
function[, flags])

Object Request Object Response Object

getPrototypeOf(obj)

hasOwnProperty(prop)

properties

url

headers

method

path

query

body

session

methods

writeHead

end

send

render

redirect

set

status

